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Intelligent Data Understanding Grou

The IDU group develops novel algorithms to
detect, classify, and predict events in large
data streams for scientific and engineering
systems.
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• In early January 2007, ISS Early External Thermal
Control System developed an ammonia gas bubble

• Bubble noted by ISS controllers only —9 hours before it
"burst" and dissipated back into liquid



Key areas of research in data minin. ....................................................................... ... 	..................... ..... ...... ... . . .... ... .. .... .. . . . . . . . . . . . . .

Research Topic Areas	 App1ication Areas
• Anomaly Detection 	 • Safety critical systems
• Prediction Systems	 • Large scale distributed systems
• Text Mining	 • Earth Sciences

•

• Mining Distributed Data Systems
and Sensor Networks
High Performance Time Series
Search

• Space Sciences
• Systems Health Data from

Aeronautical and Space Systems

1 ^	 H II CNC

I^aia 3lininEand Ki v^'l.^ls^llr^++v'^f'v Si ie^



NASA Data Systems

• Earth and Space Science
—Earth Observing System generates ^'21 TB of

data per week.
—Ames simulations generating 1-5 TB per day

• Aeronautical Systems
— Distributed archive growing at 100K flights per

month with 2M flights already.
• Exploration Systems

—Space Shuttle and International Space station
downlinks about 1.5GB per day.



Earth and Space Sciences

Aeronautics and Space Systems

Developing Virtual Sensors
• Virtual Sensors predict the value of one

sensor measurement by exploiting the
nonlinear correlations between its values
and other sensor readings.

• Useful for emulating sensors back in time
or estimating the value of one sensor
based on other sensor measurements

Z: Sensors measurements
A: Wavelength or Frequency

u: Position
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Virtual Sensors in the
Earth Sciences

Collaborators
Ashok N. Srivastava, NASA Ames

Nikunj C. Oza, NASA Ames
Julienne Stroeve, National Snow and Ice Data Center

Ramakrishna Nemani, NASA Ames
Petr Votava, NASA Ames
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Has Cloud Cover Changed over
Greenland in the past 30 years?... ... 	 ..................... ..... ...... ... . . .... ... .. .... .. . . . . . . . . . . . . . . .

• New sensors on the MODIS system can detect clouds over snow and ice in the
1.6µ m band (circa 1999).
• Difficult over snow and ice-covered surfaces because of low contrast in visible
and thermal infrared wavelengths.
• Older sensors from the AVHRR system do not detect cloud cover over snow
and ice because of poor contrast. 	 MODIS
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Joint work with Nikunj Oza, Julliene Stroeve, Rama Nemani, Brett Zane-Ulman



MODIS
Spectral
Measurements

MODIS 1,2,20,31,32	 model	 MODIS 6

Model Construction

Cloud Detection back in Time

• MODIS 1.6µ m has enough contrast for this task.

• However 1.6µm channel not available in AVHRR/2.
• Predict 1.6µ m channel using a Virtual Sensor

MODIS
Cloud Signal

(Black)

Cloud signal estimated back in
time using

Virtual Sensors for the AVHRR

AVHRR Spectral
Measurements
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1995	 2000	 2005 AVHRR 1,2,3,4,5	 model	 AVHRR 6
year

Model Application
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True Positive True Negative

Accuracy Results for Three Model

• True Positive = number of times channel 6 indicated a
cloud and the model predicted cloud
• True Negative = number of times channel 6 indicate no
cloud and the model predicted no cloud



Verification of Models on MODIS Dat



Application of Models to AVHRR Dat



............... Summary .... ..... ...... ... .. .... ... .00000000000000011d ..

• Application to entire historical record is asignificant task
because of data quality issues and transitions from one sensor
system to another.

• Method applied to emulation of physics models to calculate
corrections for surface albedo measurements resulted in an
increase in speed by factor of 27 compared to existing methods.

• Potential to deploy Virtual Sensors for generation of a historical
cloud mask record.

• Model verification and validation must be done by hand since
we have no signal for comparison.

A. N. Srivastava, N. C. Oza, and J. Stroeve, "Virtual Sensors: Using Data Mining
Techniques to Efficiently Estimate Remote Sensing Spectra," Special Issue on Advanced
Data Analysis, IEEE Transactions on Geoscience and Remote Sensing, March 2005.



Virtual Sensors in
Astrophysics

Collaborators
Michael J. Way, NASA Goddard Institute of Space Science

Leslie Foster, San Jose State University
Ashok N. Srivastava, NASA Ames

Paul Gazis, NASA Ames
Jeffery Scargle, NASA Ames
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Estimating Photometric Redshifts
in the Sloan Digital Sky Survey

Joint work with Michael J. Way, Leslie Foster, Paul Gazis, and Jeffrey Scargle
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Gaussian Process Regression
M .. ........ . .... ..... . .. ..................... ................................................. ... 	 .....................

• Can have high accuracy and also measure of uncertainty

• some low-rank matrix approximations work we11 but
can have numerical problems.



StandardLeast Squares Proble



Computational Challenges



Cures for Numerical Instability: The V-Meth
Approach	 Co1umn Se1ection

1.Select columns to make 1. Use Cholesky factorization
K1 well conditioned	 with pivoting to partially

2.Use stable technique 	 factor K
for least squares 	 2. selects appropriate
problem such as	 columns for K1

• QR factorization	 89 K1 will be well conditioned
• V method	 if cond(K1) is O(condition

3.Requirement: maintain	 of optimal low ranka int s
O(nm) memory use and approximation).

O(nm7) efficiency.
The V-Method is the innovation of Leslie Foster and his students at San Jose State University



The V-Method



Prediction Accurac
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• Our ensemble models

° N Z^	 produce the best
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` UCIPI	 redshift estimatesIL	 J
=0028 0:03	 published to date.

• We are developing
Gaussian Process
Regression methods to
scale to 106 galaxies
and beyond.
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_ Scalabilitv Results



Best Published Results so fAr*M... ........ . .... ..... . .. ....................................................................... ... 	 ..................... ..... ...... ... . . .... ... .. .... .. . . . . . . . . . . . .

* To the best of our knowledge



Results for Redshift Predictions

• The V-Formulation provides an extremely
scalable and numerically stable method to
compute Gaussian Process Regression for
arbitrary kernels.

• With low-rank matrix inversion approximations
GPs performed better than all other methods.

• Allows us to compute GPs for O(200K) points in
a few seconds on a standard desktop PC.

L. Foster, A, A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, M. J. Way, P.
Gazis, and A. N. Srivastava, "Stable and Efficient Gaussian Process Calculations," Journal
of Machine Learning Research, 10(Apr):857--882, 2009.
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HEALTH MANAGEMENT,

Supportingthe
Flight Readiness Review for STS-119

Collaborators
Ashok N. Srivastava, NASA Ames

Dave Iverson, NASA Ames
Bryan Matthews, SGT

Bill Lane, NASA Johnson Space Center
Bob Beil, NASA Kennedy Space Center



Overview

• Ashok received a request to support the Flight Readiness Review for STS-119 which
was scheduled for 2/20/09 as the Data Mining Subject Matter Expert.

• Data mining algorithms developed at NASA were applied to these data to
determine whether any anomalies can be detected in STS-126 and its predecessor
flight STS-123 for Space Shuttle Endeavor.



AlgorithmsandData . ... ..

• IMS (Inductive Monitoring System): a data point
is anomalous if it is far away from clusters of
nominal points.

• Orca: a data point is anomalous if it is far away
from its nearest neighbors.

• Virtual Sensor: a data point is anomalous if the
actual value is far away from the predicted value.

• Data: 13 pressure, temperature, and control
variables related to the Flow Control Valve
subsystem.



I MS Anomaly Score
............................................................. ... 	 ..................... ..... ...... ... . . .... ... .. .... .. . . . . . . . . . . . . . . .



I MS Anomaly Score



I MS Anomaly Score



Virtual Sensor: STS-118 and STS-126
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• Redlines	 •^¢
correspond to 3-

sigma nominal error
rate on STS-118.

-STS-126 shows
anomalous behavior
after 93.6 seconds.



Virtual Sensors with Adaptive Threshol

A. N. Srivastava, B. Matthews, D. Iverson, B. Beil, and B. Lane, "Multidimensional
Anomaly Detection on the Space Shuttle Main Propulsion System: A Case Study,"
submitted to IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2009.



The Role of Data Mining in
Aviation Safety

Ashok N. Srivastava, Principal Investigator
Claudia Meyer, Project Manager
Robert Mah, Project Scientist



.	 .	 .	 .	 ..	 ..	 ...	 ..	 ..........	 ................................................................................................................................

Integrated Vehicle Health Management:
An Aviation Safety Project



Some Partners of the IVHM Proj



IVHM Covers a broad range of technolo

Vehicle Technology
	

Operations
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Data Mining in Support of Global Operations
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DASH1ink harnesses the power of web 2.0 to further Systems Hea1th

and Data Mining research
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Organization of IVHM

I	 - Project Operations 	 I
Manager: Jeff Rybak

- NRA
Manager: Lilly Spirkovska

Principal Investigator: Ashok Srivastava
Project Scientist: Robert Mah

Project Manager: Claudia Meyer
- ARC, DFRC, GRC, LaRC Center

POCs

Associate Principal Investigators

-Detection	 -Diagnosis	 - Prognosis	 -Mitigation	 -integrity Assurance

API: John Lekki 	 API: Rick Ross	 API: Kai Goebel 	 API: Eric Cooper	 API: Eric Cooper

-Level 2

Aircraft Systems
	

Airframe
	

Propulsion Systems
	 Software

	

Traditional Aircraft Subsystems — we11 represented in Leve1s 1,3 and 4
	

Lead: Paul Miner
Newly Recognized Aircraft Subsystem

-Level 1 Lead Researchers

-Advanced Sensors and
Materials

Lead: Tim Bencic

-Modeling

Lead: Kevin Wheeler

-Advanced Analytics and
Complex Systems
Lead: Nikunj Oza

-Verification and Validation
Lead: Steve Jacklin ]R
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The Data Mining Tea

Group Members

Kanishka Bhaduri, Ph.D.
Santanu Das, Ph.D.
Elizabeth Foughty
Dave Iverson
Rodney Martin, Ph.D.
Bryan Matthews
Nikunj Oza, Ph.D.
Mark Schwabacher, Ph.D.
John Stutz
David Wolpert, Ph.D.

Funding Sources

• NASA Aeronautics Research Mission
Directorate- IVHM Project

• NASA Engineering and Safety Center

• Exploration Systems Mission Directorate
Exploration Technology Development
Program, ISHM Project

• Science Mission Directorate

Team Members are NA SA Emp/0yees, C0ntract0rs, and Students9
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APPENDIX



Virtual Sensors Approach
• Given MODIS channels 1, 2, 20, 31, 32 correspond to five AVHRR/2 channels
• Develop a model for MODIS channel 6 (1.6mm) as a function of these channels
• Use function to construct estimate of 1.6mm channel for AVHRR/2

MODIS 1,2,20,31,32	 model
	 MODIS 6

Model Construction

AVHRR 1,2,3,4,5	 model
	 AVHRR 6

Model Application



Characterizing the
Structure of the 

I 
.......... .......................... ...

Large Scale
Universe
...................................................................

There are between 125 and 500 billion
galaxies in the universe.

Obtaining a good estimate of their 3-D
position in the sky would help determine
the filamentary structure of the universe
to constrain cosmological models.

We are building machine learning methods
to estimate the redshift of galaxies using
broad-band photometry.

If these estimates are of high enough
accuracy, it would enable a better
understanding of how the universe evolved after the Big Bang.



What are Photometric Redshifts?

Photometric Redshifts: A rough estimate of the redshift of
a galaxy without having to measure a spectrum.
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The Empirical Approach to
Redshift Estimation

Training sample consists of galaxies with
• known spectroscopic redshift
• a comparable range of magnitudes ( u g r i z) to our photometric

survey objects

Galaxy Photometric Redshift Prediction History

•	 Linear Regression was first tried in the 1960s
•	 Quadratic &Cubic Regression (1970s)
•	 Polynomial Regression (1980s)
•	 Neural Networks (1990s)
•	 Kd Trees & Bayesian Classification Approaches (1990s)
• Support Vector Machines & GP Regression (2000s)



Kernels Incorporate Prior Knowledge



Gaussian Process Regression

Johann Carl Friedrich Gauss (1777-
1855), painted by Christian Albrecht

Jensen (wikipedia)

A large # of hidden units in a Neural Network

Gaussian Process
y
Regression (Neal 1996).



Large Scale Gaussian Processes

With our SDSS (DR3) Main Galaxy spectroscopic sample
(180,000 galaxies) the matrix size is 180,000 x 180,000

• Need a supercomputer with a LOT of ram and cpu time?
• One can take a random sample of 1000 galaxies & invert that

while bootstrapping n times from full sample
• However, some low-rank matrix approximations work we11

such as Cholesky Decomposition, Subset of Regressors but can
have numerical problems.

• Solution: V-method (Cholesky decomposition with pivoting)

The V-Method is the innovation of Leslie Foster and his students at San Jose State University



Numerical Instability in
Subset of Regressors Method



Low Rank Approximations ..



Results from Other Auth
........  ... 	 ..................... ..... ...... ... II

-Stanford 08



Summary of Our Results
......... ... 	 ..................... ..... ...... ...

Resu1ts: SDSS (DR3) Main Ga1axy Samp1e

• Paper I: Compared linear, quadratic, Neural Networks
and GPs on the SDSS

• With ONLY 1000 samples GPs performed well
compared to the other methods

• Paper II: With low-rank matrix inversion
approximations GPs performed better than all other
methods

-Stanford 08



Virtual Sensor: STS-123 and STS-126

• Redlines
correspond to 3-

sigma nominal error
rate on STS-123.

-STS-126 shows
anomalous behavior
after 93.6 seconds.



Summary of Research Needs in Aviation Safety

Integrated Vehicle
Health

Management

• Aircraft aging and durability
— Full fundamental knowledge about legacy aircraft
— Start on knowledge about likely emerging materials and structures

• On-board system failures and faults —airframe, propulsion, aircraft systems (physical and
software)
— Early prediction, detection and diagnosis
— Prognosis
— Mitigation

• Monitoring for problems before they become accidents
— Vehicle issues
— Airspace issues

• Loss-of-control
— Understanding aircraft dynamics of current and future vehicles in damaged and upset

conditions
— Control systems robust to the unanticipated and anticipated
— Aircraft guidance for emergency operation

• Flight in hazardous conditions
— Modeling and sensing airframe and engine icing and icing conditions
— Sensing and portraying environmental hazards

• New operations
— Design of robust collaborative work environments
— Design of effective, robust human-automation systems
— Information management and portrayal for effective decision making



The Powers of Aviation Safety — 10-6 -106

There is no one `silver bullet'— we must look
at all contributors to safety
Consider the space we must consider:
—Safety at the smallest level
— Safety spanning the nation (and the world!)

Let us consider these different sizes, expressed
as `PoWers of Ten'

10 -6 	10-5	10-4	10-3 	10 -2 	10-1	100 	10 1 	102 	103 	104 	105 	106

!



10z The Aircraft

10-6	 10-5
	

10-4	 10 -3 	10 -2 	10-1	 100 	10 1 	102 	103 	104 	105 	106



Organization of IVHM

I	 - Project Operations 	 I
Manager: Jeff Rybak

- NRA
Manager: Lilly Spirkovska

Principal Investigator: Ashok Srivastava
Project Scientist: Robert Mah

Project Manager: Claudia Meyer
- ARC, DFRC, GRC, LaRC Center

POCs

Associate Principal Investigators

-Detection	 -Diagnosis	 - Prognosis	 -Mitigation	 -integrity Assurance

API: John Lekki 	 API: Rick Ross	 API: Kai Goebel 	 API: Eric Cooper	 API: Eric Cooper

-Level 2

Aircraft Systems
	

Airframe
	

Propulsion Systems
	 Software

	

Traditional Aircraft Subsystems — we11 represented in Leve1s 1,3 and 4
	

Lead: Paul Miner
Newly Recognized Aircraft Subsystem

-Level 1 Lead Researchers

-Advanced Sensors and
Materials

Lead: Tim Bencic

-Modeling

Lead: Kevin Wheeler

-Advanced Analytics and
Complex Systems
Lead: Nikunj Oza

-Verification and Validation
Lead: Steve Jacklin YK

-H]



Recent Safety Advances
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